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We present a statistical framework to model the spatial distribu-
tion of molecules based on a single-molecule localization micros-
copy (SMLM) dataset. The latter consists of a collection of spatial
coordinates and their associated uncertainties. We describe itera-
tive parameter-estimation algorithms based on this framework, as
well as a sampling algorithm to numerically evaluate the complete
posterior distribution. We demonstrate that the inverse computa-
tion can be viewed as a type of image restoration process similar
to the classical image deconvolution methods, except that it is
performed on SMLM images. We further discuss an application
of our statistical framework in the task of particle fusion using
SMLM data. We show that the fusion algorithm based on our
model outperforms the current state-of-the-art in terms of both
accuracy and computational cost.
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Single-molecule localization microscopy (SMLM) is a set of
fluorescence microscopy techniques that have enabled visu-

alization of small biological structures that was previously con-
sidered impossible due to the resolution limit (1). They do this by
repeatedly imaging a small random subset of fluorescent mole-
cules in the sample, creating images with sparse support and
thereby allowing extremely high accuracy in determining the
locations of the molecules. These techniques sacrifice temporal
resolution to some degree but gain enhanced spatial resolution
by at least 1 order of magnitude.
An SMLM dataset, although often presented in an image

format, is in fact a set of highly accurate localization coordinates.
Nevertheless, the scientific interest, whenever one performs an
SMLM experiment, is usually to gain knowledge about the spa-
tial distribution of biomolecules in a specimen. Despite their
accuracy, localization coordinates differ from the true localiza-
tions of the molecules by a certain error. Meanwhile, there is a
finite and nonuniform probability that any 2 localizations from
an experiment can be originated from the same spatial location
(within error, i.e., from the same pixel), and, sometimes, from
the exact same target molecule. Thus, the SMLM images are
approximate measures of the true molecular distributions at best.
We are interested in the general question of what can be said

about the true molecular distribution, let us call it θ, from a set of
observed localizations from an SMLM experiment. Like most
of the inverse problems in sciences and engineering, the problem
of solving θ is both ill-posed and without a unique solution.
Therefore, the question can only be studied in a probabilistic
sense, that is, by computing a probability density of θ conditioned
on the experimental observations.
An analogy can be made between the task of estimating θ and

the practice of deconvolution in traditional optical microscopy.
Deconvolution is a well-known technique to reverse the effect of
optical diffraction, which is the source of the resolution limit in
normal optical microscopy images. In the traditional photon-
based images, localization information is mediated by individ-
ual photons and carries an uncertainty arising from the physical
nature of the diffraction; similarly in SMLM, localization information

is mediated by single molecules and carries an uncertainty
arising from fitting errors. Therefore, computing θ is to perform
image restoration on SMLM data and should have a similar
effect as the deconvolution operator on traditional microscopy
images. There is, however, a key mathematical difference be-
tween photon-based images and SMLM images: The blurring
in photon-based images can be characterized by PSF (point
spread function), which describes the full statistics of how a
photon deviates from its true location of origin during the
imaging process. An implicit assumption embedded in the PSF
is that all photons carry the same uncertainty statistics, at least
when they are detected in nearby locations. The same cannot be
said for SMLM images, because the localization uncertainty in
SMLM depends on signal intensity, which varies and follows a
relatively broad distribution. Therefore, computing θ would
require a very different approach from that of the traditional
deconvolution.
Here, we present a statistical model that allows numerical com-

putation of the posterior distribution of θ, as well as iterative algo-
rithms for parameter estimation based on this model. We performed
some validations and numerical analyses of these algorithms using
simulated imaging datasets, and we also demonstrated an applica-
tion of the model in particle fusion using experimental data.

Significance

Single-molecule localization microscopy (SMLM) is quickly be-
coming an indispensable tool for studying biological structures.
Meanwhile, we are presented with new challenges in the
analyses of SMLM data arising from their unique noise statis-
tics. In this paper, we solved a fundamental problem with
regard to the modeling of SMLM data. Specifically, we estab-
lished a theoretical connection between a set of experimentally
acquired SMLM data and the underlying spatial distribution of
fluorescent molecules. Based on this framework, we can extract
higher-resolution information that is obscured by the raw data.
The same framework also allows us to develop better image
alignment algorithms, and thus obtain faster and more accurate
results in particle fusion applications.

Author contributions: J.Y. designed research; J.Y. performed research; J.Y. and A.E. ana-
lyzed data; and J.Y. and A.E. wrote the paper.

Conflict of interest statement: A.E. is currently an employee of Metrum Research Group, a
biomedical consulting firm. A.E. performed research related to this publication as a grad-
uate student at UConn Health, prior to his employment at Metrum Research Group.

This article is a PNAS Direct Submission. M.L. is a guest editor invited by the
Editorial Board.

Published under the PNAS license.

Data deposition: The current versions of our implementation of the various algorithms
have been deposited at GitHub, https://github.com/jiyuuchc/lmdeconv.
1To whom correspondence may be addressed. Email: jyu@uchc.edu.
2Present address: Metrum Research Group, Tariffville, CT 06081.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1912634116/-/DCSupplemental.

First published September 23, 2019.

20438–20445 | PNAS | October 8, 2019 | vol. 116 | no. 41 www.pnas.org/cgi/doi/10.1073/pnas.1912634116

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
22

, 2
02

1 

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1912634116&domain=pdf
https://www.pnas.org/site/aboutpnas/licenses.xhtml
https://github.com/jiyuuchc/lmdeconv
mailto:jyu@uchc.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912634116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912634116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1912634116


www.manaraa.com

Statistical Model
Our primary interest is to calculate the spatial distribution of the
fluorescent molecules in the imaged area. Since the data obtained
experimentally have a finite number of localizations, it is only
reasonable to infer the molecular distribution also on a finite basis,
i.e., via discretization. It is customary to model such a distribution
on a grid of pixels. Here, we denote θj as the fraction of molecules
located within pixel j. Therefore, we define the following:

θ =
def fθ1, . . . , θmg,   where θj ∈ ð0,1Þ  and  Σjθj = 1. [1]

We assume the image has m total pixels.
It should be noted that Eq. 1 makes no assumption concerning

how the pixels are arranged in real space, nor does it make any
assumptions about the spatial dimension. In fact, the theory dis-
cussed here applies to data in any spatial dimension. In addition,
we note that, in this paper, we are only concerned with the relative
distribution of molecules and not their total number in the sample.
However, this should not be viewed as a limitation. Methods to
estimate the absolute molecular counts from single-molecule data
have been the focus of several previous studies (2, 3) and can be
performed independently of the calculations discussed in this
paper. Molecular counts can then be combined with θ to yield the
absolute molecular concentrations in the sample of interest.
We use the notation g to represent the information contained

within an SMLM dataset. Experimentally obtained SMLM datasets
consist of a list of localization coordinates obtained from the fitting
of many fluorescence images. Meanwhile, the experimental data
usually also contain quantitative information regarding the localiza-
tion uncertainty. Most of the modern SMLM fitting software can
perform close to the Cramer–Rao lower bound (CRLB) (4–6);
therefore, the localization uncertainties can often be estimated from
the imaging data of the individual molecules. The uncertainty values
are sometimes utilized in SMLM image rendering, where each lo-
calization is represented by a Gaussian spot, whose width is de-
termined by the uncertainty values (7). Slightly complicating the
problem are the cases in which 2 or more molecules are detected
close to each other, resulting in a lowered fitting accuracy, the exact
value of which can be difficult to determine experimentally. Here, we
assume that these events are rare and that localization uncertainties
on all detected localizations are available from the experiment:

g =
def

n
gi,j ∈ ð0,1Þ; i= 1, . . . , n j= 1, . . . ,m

oX
j

gi,j = 1  for  all  i,

[2]

where gi,j denotes the probability that the ith localization was
originated from the jth pixel due to the localization uncertainty
and n is the total number of localizations obtained from the ex-
periment. Note, in this notation, g represents the full knowledge
about the data, and if we know g, we know both the central posi-
tions of the localizations as well as their associated uncertainties.
Our goal is to find an efficient algorithm to quantitatively

evaluate the posterior probability distribution pðθjgÞ. To do that,

we need to introduce a latent variable u =
def fu1, . . . ,ung to rep-

resent the true localization of each detected localization, i.e.,
ui = j indicates that the true location of the ith localization is in
the jth pixel. The distribution pðθjgÞ can then be expressed via
the marginalization of u,

pðθjgÞ= 1
C

pðθÞ
X
u

pðgjθ, uÞpðujθÞ. [3]

Here, the summation is over all possible choices of u, C is a
normalization constant, and pðθÞ is the prior distribution of θ,

reflecting the experimenter’s knowledge about θ before experi-
mental data were obtained.
The exact functional form of pðθÞ deserves some discussion.

One obvious choice is the constant prior [p(θ) = constant], which
is almost always a good choice, because it reflects the scientific
desire of not assuming anything before the experiment but de-
riving all statistical information from the empirical data only. In
fact, all of the numerical results presented in this paper were
based on a constant prior. That said, in many practical situations,
it may be desirable to use a more relaxed prior form. Specifically,
we suggest a symmetric Dirichlet distribution for our model:

pðθÞ=Dirðθ : α0Þ= Γðnα0Þ
½Γðα0Þ�n

Y
i

θα0−1i . [4]

This prior choice has several advantages. First of all, pðθÞ reduces
to a constant function if α0 = 1; thus, the constant prior can be
viewed as a special case of the Dirichlet prior. More importantly,
the Dirichlet prior distribution facilitates tuning of the sparsity in
the inference results. Specifically, if α0 < 1, pðθÞ is larger when θ is
sparse (molecules are concentrated into a small number of pixels).
Consequently, the model will overweight sparse θ values in its
results; and vice versa, if α0 > 1, sparse solutions will be under-
weighted in the results. This is useful if the researcher has some
prior knowledge of the sample sparsity, which is not an uncom-
mon scenario. Finally, it is well known that Dirichlet distribution
is a conjugate prior to several exponential family probability
distributions, which facilitates the computation of many statisti-
cal problems. Indeed, as shown in SI Appendix, this choice sim-
plifies the expression of pðθju; gÞ.
Our aim is to understand the statistical properties of θ. For

that purpose, Eq. 3 is not very useful by itself, despite its rela-
tive simple form. Instead, we devised a method to numerically
evaluate this distribution via a Gibbs sampling scheme. The idea
is to iteratively sample θ and u from 2 conditional probability
distributions:

1) Draw one sample of u½t+1� from pðu��θ½t�; gÞ;
2) Draw one sample of θ½t+1� from pðθ��u½t+1�; gÞ;
3) Repeat.

According to the principle of Gibbs sampling, such a scheme
will produce samples from the joint distribution pðθ, ujgÞ. By
simply discarding all u values from the results, we end up with
samples from the distribution pðθjgÞ.
The sampling scheme takes advantage of the fact that, unlike

pðθjgÞ, the 2 conditional probability distributions, pðujθ; gÞ and
pðθju; gÞ, can both be expressed in simple analytical forms with-
out complex normalization factors. As shown in SI Appendix,

pðujθ; gÞ=
Y
i

θuigi,uiP
jθjgi,j

, [5]

and

pðθju; gÞ=Dirðθ : α0 +UÞ, [6]

where U denotes the histogram counts of u in all pixels, i.e., Uj is
the number of u’s elements that equal to j.
The first equation (Eq. 5) is simply the product of multiple

categorical distributions. Algorithms for sampling from categorical
distributions are well known. The second equation indicates that
samples of θ should be drawn from the Dirichlet distribution. The
problem can be converted to a much simpler one by drawing
parallel samples from multiple Gamma distributions. In Algorithm 1,
we outlined the pseudocode for the implementation of this
sampling scheme.
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Finally, we want to point out that in the above formulation we
assumed that throughout the experiment, all localizations are
detected following the same molecular distribution θ, which may
not be true in reality. The current cohort of SMLM techniques
can be roughly divided into 2 groups: the first group, represented
by PAINT (point accumulation in nanoscale topography) (8, 9),
localizes single molecules through reversible bindings of fluo-
rescent probes; while the second group, represented by STORM
(stochastic optical reconstruction microscopy) (10) and PALM
(photoactivation localization microscopy) (7), localizes single
molecules by switching on or off the fluorescent states of the
molecules. While our assumption is satisfied exactly in the first
group, in the second group, each localization induces a finite
probability of photobleaching; therefore, the θ values fluctuate
slowly throughout the experiment. Here, we assume that the
probability distribution of interest can be approximated using an
“average” θ that is constant over time. In Properties of θ̂ and θ,
we will briefly examine numerically how this assumption affects
the accuracy of the algorithms.

Parameter Estimation
An important motivation to model pðθjgÞ is to obtain a numerical
estimation of θ based on experimental data. Here, we discuss 2
potential estimators.
The first method to estimate θ—since we already discussed the

method to sample the posterior distribution—is by calculating
the sample average ð1=NÞPN

i si, where si values are individual
samples of θ. With a sufficient number of samples, the result
approaches the so-called posterior expectation estimator, also
known as the MMSE (minimum mean square error) estimator:

θ =
def

Z
θpðθjgÞdθ. [7]

The second method is to compute the mode of the posterior
distribution, resulting in the MAP (maximum a posteriori)
estimator:

θ̂ =
def

argmax
θ

p
�
θ
��g�. [8]

Although in principle the mode of the distribution can also be
obtained from a sufficient number of samples, it is significantly
faster to compute it via an EM (expectation-maximization)-
type optimization algorithm. The key equation for this method
is the iterative updating formula (see SI Appendix for the full
derivation):

θ̂
½t+1�
j ∝

X
i

θ̂
½t�
j gi,jP
kθ̂

½t�
k gi,k

+ α0 − 1, [9]

where θ̂½t� is a previous guess of the molecular distribution and
θ̂½t+1� is a newly updated and better guess. For this iterative algo-
rithm to work, one needs an initial guess of θ̂½0� to start the
iteration. A generic choice is to use a uniform image, i.e., by
setting all elements of θ̂½0� to the same value, which we found
to work well.
One complication in applying Eq. 9 is that if one starts with a

sparse prior ðα0 < 1Þ, the iterations potentially could produce
negative numbers in some pixel positions. Negative numbers are
outside the support of the θ distribution. One way to avoid such a
situation is to take the largest optimization step one could pos-
sibly take within the support by setting the offending pixels to
zero. Therefore, the iterative rule in this situation becomes the
following:

θ̂
½t+1�
j ∝max

0
@0,

X
i

θ̂
½t�
j gi,jP
kθ̂

½t�
k gi,k

+ α0 − 1

1
A  if   α0 < 1. [10]

Readers familiar with statistical models with L1-regularization (11,
12) would recognize that Eq. 10 is essentially a soft-thresholding
operator commonly seen in those types of problems. This con-
nection is somewhat reaffirming, because L1-regularization is
typically used to enforce sparsity in solutions. Here, by adopting
a sparse Dirichlet prior, we are trying to achieve the same goal.
Therefore, the 2 approaches resulting in a similar type of math-
ematical operation is not entirely unexpected.
Finally, we would like to point out a connection between the 2

estimators discussed here (MAP and MMSE estimator) and the
current image-rendering practices in the SMLM field. To start,
one can consider an extreme scenario where all localizations
obtained in an experiment are far apart from each other, so that
the correlation between different localizations can be safely ig-
nored and the parameter estimation can be done one localiza-
tion at a time. For a single measured localization, the MAP
estimator is the localization centroid position itself; thus, the
computed θ̂ image is the histogram representation of the locali-
zation data (i.e., the pixel intensity is directly proportional to the
number of localizations detected in this location). Conversely, the
MMSE estimator for a single localization is a Gaussian spot, whose
width is governed by the localization uncertainty. Therefore, the
image representation is the Gaussian-spot representation. Both
representations are used in the current practices. Of course, neither
the histogram representation nor the Gaussian-spot repre-
sentation considers correlative information between different
localizations and thus is not an accurate representation of the
full information conveyed by the data.

Properties of θ̂ and θ
To evaluate the numerical properties of the algorithms proposed
above, we first performed some simple computational tests on
simulated SMLM data. We considered a simple ring-shaped
structure (Fig. 1A) with 40-nm outer diameter and 20-nm inner
diameter. We generated localization data following 2 different
data models: The PAINT data model assumed that the mole-
cules are localized within the ring structure with uniform prob-
ability, while the STORM data model assumed that there were a
fixed number of fluorescent molecules (200) within the structure
and each localization has a 5% probability to irreversibly pho-
tobleach the molecule. For both cases, we assumed the number
of photons produced in each localization followed a geometric
distribution, but if the intensity was lower than 20% of the mean,
the data were discarded. This resulted in an average localiza-
tion uncertainty of 14.3 nm, with a SD of 5.5 nm. SMLM images
were generated with a various number of localizations, from 30
to 3,000.
In Fig. 1B, we show examples of the θ inference results. The

original localization data were plotted in both the histogram
representation as well as the Gaussian-spot representation,
which can be compared with θ̂ and θ images, respectively. It can be
seen that the θ images deviate from their corresponding SMLM
representations at even the lowest localization density. More
importantly, at a higher localization density, the θ images reflect
the ground truth with higher fidelity than the direct renderings of
the SMLM data. In the images directly rendered from the raw
dataset, the center holes are obscured due to the localization
errors, in contrast to the computed θ images, in which the holes
are clearly visible. This improvement cannot be achieved by
simply excluding the localizations with larger errors in the direct
rendering. In fact, direct renderings after removing up to 80% of
the localizations (SI Appendix, Fig. S1) do not significantly
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improve the image quality with this dataset. Instead, the statis-
tical algorithm achieves its results mainly by identifying corre-
lations between multiple localizations and “correct” localization
errors based on the correlative information. Similar simulations
on dataset derived from other types of structures (e.g., cross and
disk; SI Appendix, Figs. S2 and S3) produced images with similar
qualitative improvements. Combined, these results are consistent
with the notion that θ images computed from the model repre-
sent a kind of “deconvoluted” images of the original SMLM
data. Despite this connection, performing standard Richardson–
Lucy deconvolution (Fig. 1B), using a Gaussian PSF corresponding
to the average localization uncertainty, produced inaccurate re-
sults, indicating that accurately accounting for the variations of
localization uncertainties is important for the computation.
Visual comparison between the PAINT model and the

STORM model suggests that the algorithms produced θ estima-
tions with similar accuracy in those 2 cases. More quantitative
comparisons can be made by computing mean square error (MSE)
of the estimators against the ground truth (Fig. 2). Our results
show that the estimators computed from the STORM data exhibit
a slightly larger MSE, likely due to the aforementioned approxi-
mation of the model. Nevertheless, the algorithms are effective in
both cases in producing images with reduced errors.
The MAP estimator θ̂ exhibited a biphasic convergence be-

havior, in which MSE decreased in early iterations and increased
again later (Fig. 2 A and B). It is well known that nonlinear
deconvolution algorithms, such as the Richardson–Lucy algo-
rithm, exhibit a similar behavior (13, 14). The mechanism can be
understood by examining the noise statistics at specific spatial
frequencies, as shown in Fig. 3. Here, we computed the signal-to-
noise ratio (SNR), defined as the ratio of the total variance of
the ground truth signal against the variance of the noise (dif-
ference between the ground truth and the estimators), at each
iteration. It can be seen that there was significant SNR recovery
at lower frequencies in early iterations, a delayed recovery at
intermediate frequencies, and a continuous deterioration at
higher frequencies. In other words, the early iterations recovered

the signal (at lower frequencies) and the later iteration tried to
overfit the noise (at higher frequencies). Interestingly, the results
also indicated that the main reason that the estimator performed
worse for STORM data is due to a faster deterioration at higher
frequencies (Fig. 3). In the deconvolution literature, it is clear that
the most effective way to stop overfitting of the noise is to perform
the optimization with a regularization term (15, 16), which re-
quires some prior knowledge about the image. We expect a similar
strategy will be effective in the SMLM case, due to the similarity of
the 2 problems.
The θ approaches a minimal MSE asymptotically, but also

exhibits a much larger residue MSE (Fig. 2 C and D), and
therefore may not be the preferred estimator in most cases.
However, for very high localization densities (e.g., n = 3,000), θ
can reach an asymptotic error close to that of θ̂.
One experimental factor that can potentially impact the ac-

curacy of the θ estimation is the accuracy of uncertainty esti-
mations. As mentioned earlier, most of the SMLM software
today provide estimations for each localization uncertainty;
however, they typically do this by computing the theoretical
CRLB limit assuming shot-noise–limited signals and a uniform
background. Furthermore, one of the most important experi-
mental factors affecting the localization uncertainty is the num-
ber of photons detected, which needs to be computed from
calibrations. Extra photon noise, uneven background, or inac-
curate calibration all can introduce errors in the reported lo-
calization uncertainty. To assess how these errors impact the
accuracy of the θ estimations, we performed computations on
simulated data with various amounts of relative errors in the
estimations of the localization uncertainties (SI Appendix, Fig.
S4). We found that small relative errors (below 20%) have vir-
tually no effects on the accuracy of the θ estimators (based on the
MSE measures). However, once the uncertainty errors reach
∼30%, there is a significant jump in the MSEs of the estimators,
especially θ̂, pointing to an upper limit of the allowed uncertainty
errors for this algorithm.

40nm
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n=
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0

n=
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00

n=
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n=
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n=

30
0

n=
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00
n=

30
00

A

B C

PAINT data model STORM data model

Histogram GaussianSpot R-L Histogram GaussianSpot R-L

Fig. 1. Numerical validation of θ estimation algorithms with synthetic SMLM data. (A) The ground truth for the spatial distribution of the imaging targets. (B)
Simulated SMLM images in either the histogram representation (first column) or the Gaussian-spot representation (second column). The θ̂ images (third column)
were computed from the SMLM data with 50 iterations. The θ images (fourth column) were computed from a single run with 10,000 sampling iterations following
a 1,000-iteration burn-in run. The Richardson–Lucy deconvolution results (fifth column) of the same SMLM image (histogram representation) were also plotted for
comparison. All computations were performed on an 8-nm grid. The n values represent different numbers of localizations used for each SMLM image. (C) Same as
B, except the SMLM data were generated via STORM data model instead of PAINT data model. See the main text for details of the 2 data models.
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Next, we tried to get a rough estimation of the effective res-
olution of θ̂. The effective resolution of the original SMLM data
can be evaluated via computing Fourier ring correlation (FRC)
between 2 subsampled SMLM images (17, 18). However, this
cannot be done with θ̂. Instead, we performed FRC between θ̂
and the ground truth image (Fig. 4). In this case, the commonly
used FRC threshold of 0.143 corresponds to a corrected
threshold of 0.5 (19), due to the absence of the subsampling.
Based on this measure, we found that the θ̂ images exhibit a
resolution that is roughly 2 times the original data when the
localization density is high (Fig. 4, Right; localization density,
∼1.06 nm−2). Lower localization density also allows recovery of
some high-resolution features (Fig. 4, Left), but the correlation
factor does not reach the threshold of 0.5, indicating that the
confidence of the recovered features is low. Most SMLM ex-
periments available today do not have a localization density
that is comparable to the high end of the simulations here. This
limitation will impact the performance of θ computation from
experimental data. For example, in SI Appendix, Fig. S5, we
plotted experimental STORM images of microtubules in COS
cells, as well as the corresponding θ images. The computed
images exhibited some expected improvements. For example,
the hollow cores of the microtubules were more prominent in
the θ̂ images. Meanwhile, other spatial features in θ̂, such as
the spotty appearance along the longitudinal axis of the mi-
crotubules, were unexpected and may be due to overfitting
artifacts.

Application: Particle Fusion
Although direct θ estimation is the most obvious application of
the proposed model, we would like to suggest that many other
inference problems involving SMLM will also benefit from our
model. In our view, the significance of the model is that it

provides a mathematical foundation for interpreting SMLM
datasets, which is generally useful when working with SMLM data.
Here, we demonstrate one such idea in the case of SMLM
particle fusion.
Particle fusion aligns many noisy images of identical particles

to produce a high-quality image. The technique originated from
the electron microscopy (EM) field but recently has been
adopted to superresolution optical microscopy data (20–22).
Despite its origin in EM, it has been recognized that the existing
EM algorithms may not work well for SMLM data, due to the
vastly different noise characteristics (23, 24). Heydarian et al.
(23) recently published an algorithm tailored for SMLM, which
performs significantly better than previous software. The core
concept of the new method is to register single-particle SMLM
images reconstructed with a Gaussian kernel, which allows fast
image registration computations. In addition, to improve accu-
racy, registrations are performed between all pairs of particles.
It therefore has a O(N2) type complexity versus the particle
number.
We hypothesized that a better result may be obtained by

registering particle images against θ, instead of other SMLM
images, because θ is a better “resolved” image. Furthermore, in
this case, the data likelihood serves as a good cost function for
image registration:

Lðθ, g, tÞ =def −log pðgjθ, tÞ=−
X
i

log p
�
gi,·jθ, t

�
. [11]

Here, t represents all parameters of the rigid affine transfor-
mation used for the registration. It typically has only 3 degrees
of freedom, 2 for the translations and 1 for the rotation. Fur-
thermore, the term pðgi,·jθ, tÞ can be intuitively understood as
the following: If we perform, on θ, a Gaussian blur operation,

n=1000

n=3000

n=1000

n=3000

PAINT STORM
A B

C D

n=1000

n=3000 n=1000

n=3000

n=1000

n=3000

PAINT STORM

Fig. 2. MSEs of the θ estimators. (A and B) MSEs of the θ̂ estimators computed against the ground truth at every iteration for data according to either the
PAINT data model (A) or STORM data model (B). The results shown were the average of 50 independent simulated images. (C and D) MSEs of the θ estimators
computed against the ground truth at every 1,000 samples for data according to either PAINT data model (C) or STORM data model (D). The results are from
30 independent runs.
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parametrized by the localization uncertainty specified in gi,·,
followed by an affine transformation according to the parameters
in t, then the probability we are looking for is the pixel value at
the observed position of the ith localization (see SI Appendix for
more detailed discussions). Thus, the cost function we use here
takes into consideration the relative importance of high accuracy
localizations versus low accuracy localizations. For high accuracy
localizations, the θ image should have sharp features that vary
quickly over space, and therefore a small change in the trans-
formation parameters would incur a large penalty/gain in the
cost function value. In contrast, for low accuracy localizations,
the transformations would have a much smaller impact on the
cost function values due to the Gaussian blurring.
With this insight, we designed an iterative particle fusion al-

gorithm. We first performed a rough alignment of particles using
1-to-N registration and used the result to compute the posterior

distribution of θ. We then tried to get a better registration of each
particle iteratively, namely:

tk,½i+1� ← arg min
t

Z
L�θ, gk, t�

p
�
θjg1, g2, . . . , gN , t1,½i�, t2,½i�, . . . , tjN, ½i�

�
dθ. [12]

Here, we use superscript k to denote particle numbers. The in-
tegration over the complete posterior distribution would ensure
the convergence of the iterative algorithm. This is again an EM-
type iteration algorithm. A brief proof of correctness is supplied
in SI Appendix. Because direct integration in Eq. 12 is intracta-
ble, we approximate the integration by summation over samples
drawn from the θ distribution using the Gibbs sampler. The
optimization of t itself can be achieved using any generic purpose
optimization algorithms. We implemented it using the simple
gradient descent function in MATLAB. In addition, as we
pointed out previously in a related work concerning image align-
ment (25), a trick to improve convergence speed is to artificially
lower effective resolution in early iterations. We implement this
here by scaling the localization uncertainty up by a few folds in
the first iteration and reducing it to real values in later iterations.
To test the validity of this algorithm, we performed particle

fusion calculation on a set of experimentally acquired SMLM
particle data on DNA origami structures, also published by
Heydarian et al. (23). In this set of data, the original authors
designed a DNA origami that folds in a way to display 37 total
oligo binding sites, which in turn are organized to spell out a
“TUD” logo of the authors’ institute. The locations of these sites
were probed via the DNA-PAINT method; however, a certain
number of the sites were purposely inactivated to mimic the low
degree of labeling (DOL) effect in many SMLM experiments.
The complete dataset contains both high-quality data with 80%
DOL as well as low-quality data with 50% and 30% DOL.
Fig. 5 shows our computed particle fusion results for the 30%

DOL particles. The initial registration is generated by an 1-to-N
registration, i.e., we simply aligned all particles against one
randomly chosen one from the ensemble. The result, as can be
seen in Fig. 5, is quite inaccurate. Despite this poor starting
point, the iterations rapidly improved the registration quality and
the algorithm converged with 4 iterations, after which the FRC
resolution no longer improved (Fig. 5C). We then removed the
particles (27 out of 549) that are considered outliers based on
their likelihood values, and obtained a final FRC resolution of
3.5 ± 0.3 nm (Fig. 5B), which is a statistically significant im-
provement over the original result (5 nm) (23). We believe this

200 iterations
50 Iterations
1 Iteration

200 iterations
50 Iterations
1 Iteration

n= 100 n= 1000

Fig. 4. FRC resolution of θ̂. FRC against the ground truth image were computed for θ̂ images recovered at low (Left) or high (Right) localization densities,
using PAINT data model. The horizontal line denotes the expected 0.5 FRC threshold, equivalent to the commonly used 0.143 threshold when data are
subsampled. The vertical bars indicate the FRC resolution of the original SMLM images. The width of the bar represents the SD.

B

C D

A PAINT n=1000

STORM n=1000

PAINT n=3000

STORM n=3000

0.02 nm-1

0.05 nm-1

0.10 nm-1

0

Fig. 3. SNR recovery by θ̂ at different spatial frequencies. Frequency-
dependent SNRs were computed with the power spectra of the ground
truth image and the computed θ̂ images using a 0.22 nm−1 integration
bandwidth. The results from PAINT data model are shown in A and B. The
results from STORM data model are shown in C and D. Note that the peak
SNR recovery for STORM data are comparable to PAINT data at low and
intermediate frequencies. However, the deterioration of the SNR at high
frequencies is worse for the STORM data.
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improvement is mainly due to the fact that we performed reg-
istration against θ, instead of other SMLM images. Furthermore,
since the algorithm scales with particle numbers with O(N)
complexity, it runs reasonably fast on cheap equipment (1 to 2 h
per iteration on an i5 laptop).
Performing the fusion calculation on high-quality data (DOL =

80%) also yielded satisfactory results (Fig. 6). The computation
converged in 2 iterations as the starting point was significantly more
accurate. The final FRC resolution, after removing 9 outliers out of
original 383 particles, is 3.3 ± 0.2 nm, which is identical to that of
the original report.
Finally, we present the θ̂ images computed from the fusion

results (Fig. 6). These images exhibited reduced blurriness as
expected. However, it is evident that the binding sites, which
physically are point-objects at the scale of interest, still exhibited
relatively large spatial spread on the order of several nanome-
ters. We suspected that this is primarily due to the dynamic
molecular motion of individual sites and not the registration
errors. The published localization uncertainty is determined
from image fitting and CRLB; therefore, it does not take into
account the fact that the positions of the target sites may fluc-
tuate in different rounds of localizations due to low-frequency
motions. Therefore, the reported localization errors are likely an
underestimation. We tested whether we could compensate for
such errors by slightly increasing the localization uncertainty
(varying from 0.4 to 1 nm2 in terms of additional variance). We
found that such changes had relatively little effect on the particle
fusion accuracy, i.e., the final FRC resolution did not change in a
statistically significant manner. However, improvements in the θ̂
images computed from the fusion results are evident visually
(Fig. 6). In particular, the individual binding sites in the 30%
DOL particles are much better resolved when this factor is in-
troduced. It is interesting that the histogram representation of
the fusion particle itself exhibited little visual indications that the
data were in fact originated from point-sources. Nevertheless,
the apparently blurry appearance is misleading, partly because it
ignores correlations between multiple localizations, and partly
because it displays high-accuracy localizations on equal footing
with low-accuracy localizations. Once the localization accuracies

were taken into consideration, the data contain sufficient sta-
tistical information at very high spatial frequency, allowing in-
dividual sites to be resolved.

Conclusion and Discussion
The rise and rapid adoption of SMLM have led to many new
problems that are linked to these techniques’ unique noise
characteristics. To some degree, even a simple question such as
“what is the resolution” is a reflection of the fact that there exists
a complex and nondeterministic relationship between the ob-
served data and the underlying molecular distribution. It is these

Initial Iteration 1 Iteration 2 Iteration 4

B

A

C

20nm

30% DOL

Fig. 5. Particle fusion of origami images. (A) The results of the particle fusion at each iteration for the low-quality (DOL 30%) origami SMLM data. The initial
registration (Left) was generated by simple 1-to-N registration of all available particles using mutual information as a cost function. The rest of the images
showed the fusion result after 1, 2, and 4 iterations using the algorithm described in the main text. Each iteration drew 25,000 samples from the posterior
distribution using a 1.3-nm grid and used 5,000 (uniform thinning) for registration computation. (B) Final FRC computed after iteration 4. (C) The FRC res-
olution of the particle data at each iteration, showing no further improvement after fourth iteration.

20nm

80% DOL

30% DOL

Histogram
motion blur
correction

Fig. 6. Post-particle fusion θ restoration. Particle fusion results for both the
high-quality (DOL 80%) data (top row) and the low-quality (DOL 30%) data
(bottom row). The left column shows the histogram representation of the
SMLM data after 2 (Top) and 4 (Bottom) iterations of registration. The
middle column shows the corresponding θ̂ images (50 iterations) computed
using the originally supplied localization uncertainty data, which were
computed based on CRLB. The right column shows the θ̂ images (50 itera-
tions) by using a slightly increased localization uncertainty to compensate
for potential molecular motions. For 80% DOL, the variance of the locali-
zation uncertainty were increased by 0.8 nm2, and for 30% DOL, 1.0 nm2.
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questions that motivated us to investigate the statistical proper-
ties of SMLM data. To this end, we believe our current model is
a useful one, as we have shown that it provides reasonably ac-
curate inference results on both synthetic and experimental data.
A direct application of the proposed model is using algorithms

to perform inverse calculation from experimental data to θ. We
have shown that the usual representations of the SMLM data,
either the histogram type or the Gaussian-spot type, can obscure
the true resolving power of the data, especially at high locali-
zation density (>0.1 localization per nm2). At the current stage,
SMLM data that surpass this density may still be rare, but as the
techniques further improve, either because of the development
of better PAINT probes or due to further reduction of photo-
bleaching in STORM-type experiments, the status may change,
at which point, a θ-based representation may be more suitable.
There is one area where the localization density is already high

enough to warrant θ representation: namely, particle fusion.
Here, we show that our model is particularly useful for this type
of data and can further be extended to infer image registration
parameters. Indeed, the registration method based on our model
appears to outperform existing algorithms in both speed and
accuracy.
When localization density is not at a very high level, we found

that the MAP estimator θ̂ usually outperforms the MMSE esti-
mator θ in its ability to resolve finer details. However, one should
be careful with the interpretation of the MAP estimators due to
their tendency of overfitting the data, which results in artifacts at
high spatial frequencies. In principle, one could compute the
confidence level of any spatial feature by drawing samples from
the posterior distribution and finding out what percentages of
the samples exhibit the feature of interest. This assumes that a

mathematical test could be devised for the said feature (not al-
ways feasible). Ultimately, empirical researchers will likely rely
on properly designed control experiments for the validation
purpose.
An important requirement for the model is that the data

should have reasonably accurate estimation of localization un-
certainties for each localization. While most SMLM fitting
software today provide such numbers, the uncertainty values are
usually computed from theoretical limits and not validated with
experimental evidence. One potential method to (partially) val-
idate the uncertainty numbers is to examine the subset of lo-
calizations in the dataset where the same molecule is detected in
multiple consecutive frames. Presumably, the true location of the
molecule is not changing in those frames. Thus, one can test
whether the estimated uncertainties are consistent with the
measured fluctuations. Nevertheless, it is fair to say that, over the
last decade, most efforts in SMLM data analyses have been fo-
cused on improving fitting accuracy, and little attention has been
paid to accurate estimation of the uncertainties themselves.
Hopefully in the future, this problem will attract more attention
and better methods for validating uncertainty measurements will
be available.

Methods
All algorithms discussed in this paperwere implemented on amixedMATLAB/
C++ platform and were tested with the linux64 version of MATLAB R2016R.
Parameters for generating specific results shown in figures are described in
their respective figure legends.

Code Availability. The current versions of our implementation of the various
algorithms are available at https://github.com/jiyuuchc/lmdeconv (26).
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